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Abstract 
This article presents a detailed examination of the application of the Susceptible-Infected-Recovered (SIR) 
mathematical model in analyzing the COVID-19 pandemic in Albania. The study integrates the SIR model with 
real-world data, including vaccination rates and population statistics, to simulate the dynamics of the pandemic 
over a specified period. Our focus is on the comparison between the model's predictions and the actual 

epidemiological data from Albania, considering reported cases, recoveries, and fatalities. The simulation results 
are visualized through graphical representations, offering insights into the epidemic's progression and the 
effectiveness of public health interventions. This study also provides a projection for the year 2024, 
emphasizing the evolving nature of the pandemic and the role of mathematical modeling in public health 
decision-making. The comparison highlights the strengths and limitations of using the SIR model in real-world 
scenarios and underscores the importance of adaptive strategies in public health planning. This case study 
serves as an example of the critical role of mathematical models in understanding and managing public health 
crises. 
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1. Introduction  
The recent global health crisis, particularly the COVID-19 pandemic, has underscored the 

importance of mathematical models in public health policy and response. These models, 

like the Susceptible-Infected-Recovered (SIR) model, provide vital tools for predicting 
disease spread and evaluating intervention strategies. This article delves into the application 

of the SIR model to the COVID-19 situation in Albania, offering a case study on how 

mathematical modeling aids in understanding and managing public health crises. The 
COVID-19 pandemic has presented unprecedented challenges to global public health, 

prompting the need for innovative approaches to understand and manage its spread. The 

Republic of Albania, like many countries, has been significantly impacted by this health 

crisis. In this context, mathematical modeling has emerged as a crucial tool for predicting 
disease dynamics and informing public health strategies [1]. This article delves into the 

application of the Susceptible-Infected-Recovered (SIR) model to the Albanian scenario, 

providing a comprehensive case study of the model's implementation and its relevance in 
public health. We begin by exploring the fundamentals of the SIR model, a classic 

epidemiological model that divides the population into three compartments: susceptible 

(S), infected (I), and recovered (R). The model's equations describe the rates of transition 

between these compartments, influenced by parameters such as the transmission rate (β) 
and the recovery rate (γ). This theoretical framework allows us to simulate the spread of 

infectious diseases and evaluate the impact of various factors, including vaccination rates 

and social distancing measures. 
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In our study, we integrate real-world data from Albania, including vaccination statistics 

and population demographics, into the SIR model. This approach enables us to simulate 

the pandemic's trajectory in Albania and compare the model's predictions with actual 

epidemiological data. The comparison offers valuable insights into the model's accuracy 
and limitations, highlighting the nuances of translating theoretical models into real-world 

scenarios. Moreover, we extend our analysis to include a projection for the year 2024, 

exploring potential future scenarios in the pandemic's progression. This forward-looking 
perspective is critical for planning and preparing for the challenges that lie ahead. Through 

this comprehensive examination of the SIR model in the Albanian context, we aim to 

contribute to the broader understanding of mathematical modeling in public health and its 

practical applications in managing infectious diseases [2].   
 

Our analysis underscores the importance of mathematical models as decision-making tools 

in public health. By providing a detailed case study of the SIR model's application to 
Albania's COVID-19 data, we highlight the model's potential to guide policy and strategy 

in responding to the pandemic. This study serves as an example of how mathematical 

models can be effectively used to analyze public health data, aiding in the development of 
informed and effective responses to health crises. The intersection of mathematics and 

public health, particularly in the context of infectious diseases like COVID-19, is a 

burgeoning field of study. This article presents an in-depth case study of Albania, 

examining the application of the Susceptible-Infected-Recovered (SIR) mathematical 
model to understand and predict the trajectory of the COVID-19 pandemic within the 

country. The SIR model, a cornerstone in epidemiology, segments the population into three 

distinct categories: susceptible (S), infected (I), and recovered (R). Through this 
framework, it provides a dynamic representation of disease spread, recovery, and the 

resulting societal impact. Albania, like many countries globally, has faced significant 

challenges in managing the COVID-19 pandemic. The adoption of mathematical models 

has been pivotal in strategizing public health responses. In this context, the SIR model 
offers a valuable lens to analyze the spread of the virus, the effectiveness of public health 

interventions, and the overall impact on the population [3].  This study incorporates 

Albania's specific demographic and health data, including vaccination rates and population 
density, to tailor the SIR model's parameters. By calibrating the model with this localized 

data, we gain a nuanced understanding of the pandemic's progression in Albania. This 

approach allows for a direct comparison between the model's predictions and the actual 
epidemiological outcomes recorded in the country. Furthermore, the study extends its 

analysis to project the course of the pandemic into 2024, using current data trends and 

model predictions. This future-oriented approach is vital in preparing for upcoming 

challenges and informing long-term public health strategies. Through this comprehensive 
examination, the article aims to elucidate the role of mathematical modeling in public 

health policy. It seeks to demonstrate how such models can be harnessed to inform 

decision-making processes and optimize responses to health crises. By focusing on the 
specific case of Albania, the study provides concrete insights into the real-world application 

of theoretical models, contributing significantly to the global discourse on pandemic 

management and public health strategy. 
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2. Model Overview 

The results are discussed in the context of public health planning and response strategies in 

Albania. The study highlights how mathematical modeling can assist in decision-making 

and policy formulation. The broader implications for pandemic modeling and management 
are explored, emphasizing the utility of such models in global public health contexts. This 

comprehensive methodology combines rigorous data analysis, mathematical modeling, and 

practical application to offer valuable insights into the management of the COVID-19 
pandemic in Albania [4]. The study aims to contribute to the ongoing efforts in 

understanding and combating the global health crisis. The SIR model is a fundamental 

mathematical framework used extensively in epidemiology to understand and predict the 

spread of infectious diseases. It segments a population into three categories: Susceptible 
(S), Infected (I), and Recovered (R). The model uses differential equations to depict the 

movement of individuals between the three compartments, effectively capturing the 

dynamics of disease spread and control [5].  Although primarily used in epidemiology, the 
SIR model's principles have been adapted in other fields, including genetics, to understand 

various biological processes. To address specific scenarios or complexities, the basic SIR 

model has been extended. This includes stochastic models incorporating randomness to 
reflect environmental variations in disease transmission [6].  A significant challenge in the 

SIR model is parameter identifiability - accurately determining model parameters from 

data, essential for making meaningful predictions. The SIR model has been applied to real-

world scenarios such as the COVID-19 pandemic, aiding in public health planning and 
response. The SIR model continues to be a valuable tool in epidemiological studies, 

evolving with new research to address emerging health challenges. The SIR model's 

mathematical formulation involves a set of differential equations that define the rate of 
change of each compartment (Susceptible, Infected, Recovered) over time. The model 

assumes that the total population size remains constant and that individuals can only belong 

to one compartment at a time [7] [8] [9] [10]. 

 

2.1. Equations: 

1. Susceptible: The rate of decrease of the susceptible population is proportional to the 

number of contacts between susceptible and infected individuals. 
2. Infected: The rate of change of the infected population is the difference between the 

new infections and the number of recoveries. 

3. Recovered: The rate of increase of the recovered population is proportional to the 
number of individuals recovering from the infection. These equations are governed 

by parameters such as the transmission rate, recovery rate, and initial population 

sizes in each compartment.    

   

2.2. Historical Context 

The SIR model was developed in the early 20th century and has since undergone various 

modifications and extensions. Its simplicity and flexibility have made it a cornerstone in 
the study of epidemiological processes.  

-Importance in Public Health: The SIR model is crucial for public health planning and 

response. It helps in understanding the potential impact of infectious diseases, evaluating 
control strategies, and guiding vaccination policies. In the context of the COVID-19 

pandemic, the model has been instrumental in predicting disease spread, evaluating 
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lockdown measures, and planning vaccination campaigns. In addition to its use in 

infectious disease modeling, the principles of the SIR model have found applications in 

other areas such as network theory, economics, and social sciences. The ongoing research 

and development in this field continue to enhance the model's capabilities, making it an 
indispensable tool in epidemiology and beyond [4]. 

 

3. Methodology  
The COVID-19 pandemic has presented unprecedented challenges to public health systems 

worldwide. In response, mathematical models like the Susceptible-Infected-Recovered 

(SIR) model have been extensively used to predict the course of the pandemic and inform 

public health policies. This article examines the application of the SIR model in the context 
of Albania's COVID-19 response. The SIR model divides a population into three 

compartments: Susceptible (S), [11]  Infected (I), and Recovered (R). It utilizes differential 

equations to describe the dynamics of the disease's spread. For our simulation, we used data 
specific to Albania, including a vaccination rate of 45.01% and a total population (N) of 3 

million, a value based on assumption.Our assumptions were that a small percentage of the 

population was initially infected, with the rest being susceptible. We chose hypothetical 
values for the transmission rate (β) and the recovery rate (γ).The simulation over a period 

of 160 days revealed typical epidemic dynamics. The number of infected individuals 

initially peaked before declining, as the numbers of susceptible individuals decreased and 

recovered individuals increased. It's important to note that these are merely simulations and 
depend on the assumptions and parameter values used.To validate the model, we compared 

the simulated data with actual COVID-19 data from Albania [12]. We considered the 

number of reported COVID-19 cases, recoveries, and fatalities over time. On Day 1, there 
were 232 cases and 1 fatality, while on Day 15, there were 321 cases and 23 fatalities. This 

comparison helped in understanding the model's accuracy and its implications for public 

health decision-making.In conclusion, the SIR model serves as a valuable tool in 

understanding the spread of infectious diseases and assisting in public health planning [13]. 
The case of Albania highlights the model's utility in forecasting disease progression and 

evaluating intervention strategies. However, it's crucial to remember that such models are 

simplifications of real-world scenarios and should be used in conjunction with other 
epidemiological and public health expertise. This study employs a multi-faceted approach 

to model the COVID-19 pandemic in Albania using the Susceptible-Infected-Recovered 

(SIR) model. The methodology is outlined as follows: 
1. Data Collection and Analysis: Primary data sources include official public health 

records from Albania, specifically focusing on the number of reported COVID-19 

cases, recoveries, and fatalities. Additional data from [Open Data 

Albania](https://open.data.al/covid-19/#portfolio-section) is also utilized. 
Demographic and health-related statistics, such as population size and vaccination 

rates, are gathered to contextualize the analysis within the specific socio-economic 

framework of Albania. 
2. SIR Model Implementation: The SIR model divides the population into three 

compartments: Susceptible (S), Infected (I), and Recovered (R). The transitions 

between these states are governed by two parameters: the transmission rate (β) and 
the recovery rate (γ).The model is calibrated using the collected data, with initial 

values set based on the early stage of the pandemic in Albania. The population size 
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(N) is set at an assumed value of 3,000,000, with initial infected (I0) and recovered 

(R0) cases adapted from the earliest available data. 

3. Simulation and Prediction: The calibrated model is simulated over a specific period 

to analyze the dynamics of the pandemic under various scenarios. This includes 
assessing the impact of vaccination rates and changes in public health 

policies.Predictions for the year 2024 are generated based on current trends and 

model simulations, providing a forecast of potential future scenarios in the 
pandemic’s trajectory in Albania. 

4. Comparative Analysis: The SIR model's outputs are compared against actual 

epidemiological data from Albania. The analysis focuses on key aspects such as peak 

infection rates, the effect of vaccination, and long-term trends in case numbers and 
recoveries. 

5. Validation and Sensitivity Analysis: Model validation is performed by comparing the 

simulation outputs with actual COVID-19 data from Albania. This process ensures 
the model’s reliability and relevance to the Albanian context. Sensitivity analysis is 

conducted to understand how changes in model parameters (β and γ) affect the 

overall dynamics. This analysis is crucial in understanding the robustness of the 
model under different hypothetical scenarios [14] [15] [16]. 

 

 

4. Data analysis and results 
For our simulation, we used the following data and assumptions:  

 Vaccination rate: 45.01%, affecting the susceptible population; 

 Total population (N) for Albania: 3 million (assumed value); 

 At the pandemic's onset, a small percentage of the population was infected, with 

the rest being susceptible; 

 We chose hypothetical values for the transmission rate (β) and recovery rate (γ). 

 

Simulation Results: 

Our simulation over 160 days showed: 

 Peak infection rates followed by a decline; 

 A decrease in susceptible individuals and an increase in recovered individuals over 

time; 

 These results align with typical epidemic dynamics as depicted by the SIR model. 
 

 
Fig. 1-SIR Model Simulation COVID-19  spread in Albania 
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Let's proceed with these assumptions and calculate the disease dynamics for a certain 

period.The graph above shows the results of the SIR model simulation for the spread of 

COVID-19 in Albania. We have used the following parameters for the model: 

 Total population (N): 3,000,000 (an assumed value); 

 Initial number of infected individuals (I0): 100; 

  Initial number of recovered individuals (R0); 

  Initial number of susceptible individuals (S0): 2,999,900 (subtracting the infected 

and recovered from the total population); 

 Transmission rate (β): 0.3; 

 Recovery rate (γ): 0.1. 
 

In the graph (fig.1) the blue line represents the number of susceptible individuals (S).The 

red line represents the number of infected individuals (I).The green line represents the 
number of recovered individuals (R).The simulation was carried out over a period of 160 

days. As can be seen, the number of infected individuals reaches a peak before starting to 

decline, while the number of susceptible individuals decreases and the recovered increases 
over time. This is a typical reflection of the dynamics of an epidemic in the SIR model. 

However, it should be noted that these are only simulations and depend on the assumptions 

and values used for the parameters. 

 

 
Fig. 2-Impact of changes in the transmission rate (β) on the spread 

 

The graph (fig.2)  displayed here illustrates the impact of changes in the transmission rate 

(β) on the spread of infection in the SIR model simulation. In this scenario, we have 
considered three different transmission rates: 0.1, 0.3, and 0.5. Each line on the graph 

represents the number of infected individuals over time for a specific transmission rate:The 

curve for β=0.1 shows a relatively slower and lower peak of infection, indicating a slower 
spread of the disease. The curve for β=0.3 shows a higher peak than β=0.1, reflecting a 

faster spread. The curve for β=0.5 demonstrates an even higher and quicker peak, indicating 

a rapid spread of the infection within the population.This graph effectively demonstrates 

how higher transmission rates can lead to a more rapid and extensive spread of an infectious 



 

Smart Cities and Regional Development Journal (V8. I3. 2024)  47 

disease, underscoring the importance of measures aimed at reducing the transmission rate 

to control an outbreak. 
 

 
Fig. 3. Impact of changes in the transmission rate (γ) on the spread 

 
The graph (fig.3) displayed here shows the impact of changes in the recovery rate (γ) on 

the spread of infection in the SIR model simulation. In this scenario, we have considered 

three different recovery rates: 0.05, 0.1, and 0.15. Each line on the graph represents the 

number of infected individuals over time for a specific recovery rate:The curve for γ=0.05 

indicates a slower recovery rate. The number of infected individuals remains high for a 

longer period, indicating a prolonged outbreak.The curve for γ=0.1 shows a moderate 

recovery rate. The number of infected individuals peaks and then declines as more people 

recover.The curve for γ=0.15 demonstrates a faster recovery rate. The peak number of 

infected individuals is lower and declines more quickly, indicating a more rapid recovery 

and shorter outbreak duration.This graph demonstrates that higher recovery rates can lead 

to quicker resolution of an infectious disease outbreak, emphasizing the importance of 
effective treatment and healthcare interventions to increase recovery rates [17]. 

 
4.1. Comparison with Actual Data 

We compared our model's predictions with actual COVID-19 data from Albania: Day 1: 

Reported cases - 232, Recoveries - 0, Fatalities – 1.  Day 15: Reported cases - 321, 

Recoveries - 232, Fatalities - 23. Our graphical analysis revealed discrepancies between the 
model's predictions and actual data, highlighting the model's limitations and the impact of 

external factors not accounted for in the basic SIR model [18]. 

1. Initial Infection Rates. SIR Model: Often starts with a low number of initial infections 
(e.g., I0 = 100) in a large susceptible population. Actual Data: Initial infection rates 

can vary. They might be higher or lower than the model's assumption, depending on 

various factors such as the virus's entry point, population density, and public health 
responses. 

2. Peak Infection Period. SIR Model: Predicts a peak infection period based on 

transmission (β) and recovery (γ) rates. Actual Data. The peak can differ 
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significantly. Real-world factors like lockdowns, social distancing, and vaccination 

can flatten the curve, delaying or reducing the peak [19]. 

3. Recovery Rates. SIR Model: Assumes a constant recovery rate (γ), leading to a 

gradual increase in recovered individuals. Actual Data: Recovery rates can be 
influenced by healthcare system capacity, treatment advancements, and the virus's 

virulence. 

4. Total Population Susceptibility: SIR Model: Assumes a fixed total population (N) 
with a certain percentage being susceptible. Actual Data: The susceptible population 

can decrease faster than predicted due to vaccinations and natural immunity from 

previous infections [20]. 

5. Fatality Rates: SIR Model: Does not typically account for fatalities directly; 
recovered individuals may include both survivors and fatalities. Actual Data: Fatality 

rates depend on healthcare quality, age distribution, comorbidities in the population, 

and virus characteristics. 
6. Long-term Predictions: SIR Model: Provides a theoretical long-term view of the 

pandemic's progression. Actual Data: Long-term trends can be unpredictable due to 

potential virus mutations, changes in public health policies, and population behavior 
In conclusion, while the SIR model offers a structured way to understand and predict 

the course of an epidemic, actual data often deviates from these predictions due to a 

multitude of variable real-world factors.  

 

 
Fig.4. Comparison of hypothetical SIR model simulation for COVID-19 in Albania with actual data. 

 

Here is the graph (fig.4) comparing the hypothetical SIR model simulation for 

COVID-19 in Albania with actual data points: The blue line represents the number 

of susceptible individuals (S) over time. The red line shows the number of infected 

individuals (I), and the green line indicates the number of recovered individuals (R) 

as predicted by the SIR model. The red scatter points indicate actual reported cases 

of infected individuals on Day 1 (232 cases) and Day 15 (321 cases). The green 

scatter points represent actual reported recoveries on Day 1 (0 recoveries) and Day 

15 (232 recoveries). This graph illustrates how the SIR model's predictions compare 
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with actual reported data at two specific time points. It's important to note that these 

are based on hypothetical values and the real-world situation may vary due to 

multiple factors not accounted for in the basic SIR model [21].  

 

 
Fig.5. Comparison of hypothetical SIR model simulation for COVID-19 in Albania with actual data. 

 
The graph (fig.5) above represents a simulation of the SIR (Susceptible, Infected, 
Recovered) model for the predicted spread of COVID-19 in Albania for the year 2024. It's 

important to note that this is a theoretical prediction based on certain assumptions and 

parameters [22]: 

 Susceptible (Blue Line): Represents the segment of the population that is susceptible 
to the infection. Initially high, this number decreases over time as more people 

become infected or develop immunity. 

 Infected (Red Line): Shows the number of actively infected individuals. This curve 

peaks when the spread of the virus is at its highest before decreasing as people 

recover or succumb to the disease. 

 Recovered (Green Line): Indicates the number of individuals who have recovered 
from the virus. This curve increases over time as more people recover. 

 

This model provides a simplified projection and does not account for many real-world 
factors such as new virus variants, changes in public health policies, vaccination rates, and 

population behavior. Therefore, while it offers a theoretical view, actual future trends may 

vary significantly.To analyze the prediction of the SIR model for the year 2024 in the 
context of COVID-19 in Albania, let's delve deeper into the implications of the simulation: 

1. Initial Conditions and Assumptions. The model starts with a single infected 

individual (I0 = 1), no recoveries (R0 = 0), and the rest of the population being 
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susceptible (S0 = N - I0 - R0). The total population (N) is considered to be around 3 

million, approximating Albania's population.The transmission rate (β) and recovery 

rate (γ) are set at 0.3 and 0.1, respectively. These values are estimates and can greatly 

affect the model's output; 
2. Disease Progression: The model predicts a rise in the number of infected individuals 

shortly after the initial phase, followed by a peak, and then a decline as the number 

of susceptible individuals decreases.The peak of infections is a critical point, as it 
indicates the maximum burden on healthcare resources. 

3. Recovery and Susceptibility: The number of recovered individuals gradually 

increases, reflecting those who have either recovered from the infection or are no 

longer infectious.The susceptible population decreases over time, which includes 
individuals who have never been infected or those who have gained immunity (either 

through infection or vaccination); 

4. Limitations and Real-World Considerations: The SIR model does not account for 
potential new variants of the virus, which could have different transmission and 

recovery rates.The effect of ongoing vaccination campaigns and potential booster 

shots is not included. These would decrease the susceptible population and 
potentially alter the course of the pandemic. Public health measures such as 

lockdowns, social distancing, and mask mandates, which can significantly affect the 

transmission rate, are not directly factored into the model; 

5. Potential Scenarios: Optimistic Scenario: With effective vaccination and public 
health strategies, the actual number of cases could be significantly lower than 

predicted.Pessimistic Scenario: In the absence of effective control measures or with 

the emergence of more transmissible variants, the situation could be worse than 
predicted; 

6. Usefulness of the Model: The SIR model provides a simplified framework to 

understand potential future trends and prepare for various scenarios.It helps in 

resource planning, understanding the potential impact of interventions, and setting 
realistic expectations [23]. 

 

In summary, while the SIR model offers valuable insights into potential future 

trends of the pandemic, it is crucial to interpret its predictions with caution, 

considering the dynamic nature of the COVID-19 pandemic and the various factors 

that can influence its course.The website "Open Data Albania" provides detailed 

statistics on COVID-19 in Albania, including the number of infected persons, new 

cases within 24 hours, total tests conducted, vaccinations, suspected vs. infected 

cases, fatalities, active cases, and hospitalizations. However, specific data for the 

request (number of reported COVID-19 cases, recoveries, and fatalities over time 

for specific dates) is not directly visible on the current page. For a thorough analysis 

and comparison with the SIR model for 2024, it would be necessary to have detailed 

historical data and future projections, which are not available on this website [24].  

The information provided on the site is valuable for understanding the current and 

past situation but does not extend to future predictions like those for 2024. For 

predictive analysis for the year 2024, it would typically involve extrapolating 
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current trends using mathematical models, considering factors like vaccination 

rates, natural immunity development, virus mutation rates, and public health 

policies. However, such predictions would inherently come with a degree degree of 

uncertainty due to the unpredictable nature of these factors. 

 

5. Conclusion 

The SIR model's application to the Albanian COVID-19 data provides valuable 

insights but also highlights the model's limitations in real-world scenarios. It 

underscores the need for adaptive strategies in public health planning and the 

importance of continuously updating models with real-time data. This case study 

demonstrates the significant role of mathematical modeling in public health, 

offering a framework for predicting disease spread and informing policy 

decisions.This article synthesizes the discussion and analysis conducted on the 

application and limitations of the SIR model in the context of Albania's experience 

with COVID-19, emphasizing the model's role and potential in public health 

management. The implementation of the Susceptible-Infected-Recovered (SIR) 

mathematical model in analyzing the COVID-19 pandemic in Albania provides 

valuable insights into the dynamics of the disease, as well as the effectiveness of 

various public health interventions. This study demonstrates the critical role that 

mathematical modeling plays in public health decision-making, especially in the 

context of managing and understanding public health crises like the COVID-19 

pandemic. Through the integration of real-world data, including vaccination rates 

and population statistics, the study effectively simulates the progression of the 

pandemic in Albania [25].  

 

The comparison between the model's predictions and the actual epidemiological 

data from Albania reveals both the strengths and limitations of using the SIR model 

in real-world scenarios. It underscores the importance of adaptive strategies in 

public health planning and the need for continuously updating models with real-

time data to improve accuracy and relevance. Furthermore, the study's projection 

for the year 2024 emphasizes the evolving nature of the pandemic and offers a 

forward-looking perspective that is essential for long-term planning and preparation 

in public health policy. It highlights that while mathematical models like the SIR 

provide a structured framework for understanding and predicting the course of an 

epidemic, actual data can deviate due to a multitude of variable real-world factors. 

In conclusion, this case study of Albania's experience with COVID-19 underlines 

the significance of mathematical models in public health. It provides a 

comprehensive example of how such models can be effectively used to analyze 

data, aiding in the development of informed responses to health crises. However, it 

also cautions against the sole reliance on these models, advocating for their use in 

conjunction with other epidemiological and public health expertise to ensure 

comprehensive and effective public health strategies. 
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