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Abstract 
The Internet of Things generates a vast amount of data in smart cities. However, with the increasing popularity 

of cloud storage and the ever-improving hardware, data storage is no longer a problem. Despite this, there may 

still be a need to conduct research and analyze aspects such as data variety and velocity to address some 

technological issues. This paper explores the concepts of normalization and denormalization in SQL and 

NoSQL databases, highlighting their advantages and disadvantages. It emphasizes the importance of carefully 

designing data structures in smart city applications. It is essential to consider the best approach to organize and 

manage information, taking into account the various areas of interest. To identify relevant data, analytics 

techniques are required to discover patterns, insights, and trends from large and complex data sets. One way to 

do this is through AI linked with Machine Learning. This approach can provide a better understanding of policy 

formulation, resource allocation, infrastructure planning, and service optimization. Additionally, we present a 

case study of a smart city application called SmartSantander, which illustrates how the use of NoSQL databases 

and denormalization can improve query performance. This could be a solution for addressing the data velocity 

problem. The article also emphasizes the importance of interoperability and cybersecurity in smart city data 

structure design. It highlights the use of JSON as a data interchange format and the need for secure data 

warehousing to protect sensitive information. Finally, our goal is to outline a solution that a smart city could 

implement to manage data effectively and securely. We propose using a hybrid approach that satisfies all its 

needs. 
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1. Introduction 

The Internet of Things (IoT) represents the solution for something that our society has been 

looking forward to since the late twentieth century: the concept of “Smart City”. In the 

beginning, to process data structures, the US Community Analysis Bureau started using 

databases, so the term “Smart City” was developed [1]. Nowadays, smart city architectures 

work around the same principle: data collection. Let’s see how the technology changed and 

aligned its lifespan until our days. The majority of databases followed the relational model. 

mailto:costel.ciuchi@upb.ro
mailto:alin.bonciu@stud.acs.upb.ro
mailto:ana_maria.dinca@stud.etti.upb.ro
mailto:mihai.stoian1609@stud.acs.upb.ro


 186 

However, in the following years, there has been a notable increase in the popularity of 

NoSQL databases, marking significant changes in the landscape of database technologies. 

We are living in a time of transition, in which questions such as: “Which is better?” or 

“Why don’t we use only NoSQL Databases?” emerge. 

 

From 1970 (implementation of the first relational DB models using the SEQUEL language) 

until 2006 (development of the first table structured on NoSQL principles – Google Big 

Table), SQL databases have been the benchmark of data storage and retrieval, offering 

well-defined schemas and ACID (Atomicity, Consistency, Isolation, Durability) 

compliance. However, the rigid structure of SQL databases poses limitations when 

confronted with the diverse and unstructured data characteristic of IoT-generated datasets. 

On the other hand, NoSQL databases, designed to handle vast amounts of unstructured 

data, provide a more flexible and scalable alternative. The choice between these two 

paradigms becomes particularly crucial in the context of smart cities, where the diversity 

of data types, the velocity of data streams, and the need for real-time analytics are key 

factors in determining which is the best choice. 

 

2. SQL / NoSQL or both? 

For the longest time, designing a persistence mechanism for a software application was 

limited to selecting one of the relational databases existent on the market, that could only 

be differentiated by performance criteria, the complexity of the query language and the 

costs. Over the years, software platforms and their associated business flows have evolved 

significantly, becoming increasingly sophisticated with each passing decade (see Figure 1). 

This evolution has led to a growing demand for additional resources, more powerful 

technologies, faster query executions, and the introduction of entirely new persistence 

features [2]. As businesses have expanded and their requirements have become more 

complex, software platforms have had to adapt to meet these changing needs. This has 

resulted in the development of more robust and resource-intensive systems that can handle 

larger workloads and process data more efficiently. 

 

 
Fig. 1. Evolution of software platform capabilities and operations. 

Source: [2] 
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To keep up with the demands of modern business operations, software platforms have 

incorporated new technologies that can deliver faster query executions and quick data 

retrieval and processing, enabling businesses to make informed decisions promptly. 

Overall, software platforms and workflows must offer enhanced collaboration, mobility, 

user-friendliness, and productivity, making it a requirement to operate more efficiently in 

an increasingly digital world.  

 

One of the more difficult demands to tackle was the storage of non-strictly structured data 

and big objects, as they did not fit in the data models persisted by the relational database 

management systems (RDBMS). The exponential evolution of the volume of data leads to 

significant operational and maintenance challenges and pressures. Traditional relational 

databases have limitations when it comes to efficient scalability because they store all data 

in a single box, which can pose challenges for users. 

 

Therefore, a new type of database emerged in 2006, the Google Bigtable, the first 

non-relational database (NoSQL) [3] .This new approach was quickly adopted for business 

development and exploration, and in 2007 Amazon researchers published a paper on the 

technical details of Dynamo, which laid the prototype of a non-relational database [4]. 

 

This innovative approach was developed using a robust set of distributed system principles, 

leading to the creation of a database system that is both highly scalable and exceptionally 

reliable. Nowadays, non-relational databases have evolved into 4 separate types, depending 

on how the data is modelled and saved: document databases, key-value databases, 

wide-column store databases, and graph databases [5]. The objects used to structure 

NoSQL and their corresponding usage are outlined in Table 1. 

 
Table 1. NoSQL Database Types 

NoSQL database types Structure 

document databases consists of sets of key-value pairs stored in a document. These documents 

are basic units of data which you can also group into collections 

(databases) based on their functionality. 

key-value databases dictionary data structure and consists of a set of objects that represent 

fields of data. Each object is assigned a unique key. To retrieve data 

stored in a particular object, you need to use a specific key. In turn, you 

get the value (i.e. data) assigned to the key. 

wide-column store databases data is stored and grouped into separately stored columns instead of rows. 

Such databases organize information into columns that function similarly 

to tables in relational databases. 

graph databases Graph databases use flexible graphical representation to manage data. 

These graphs consist of two elements: Nodes (for storing data entities) 

and Edges (for storing the relationship between entities) 

Source: Authors' own work  

 

The persistence mechanism is a vital component of any software platform, as it directly 

influences the performance metrics. Consequently, it is compulsory to analyze the business 

requirements, in the interest of reaching a deep understanding of the features that are to be 

implemented, and to design an efficient and reliable database architecture. Traditional 

relational databases are primarily designed to operate on single servers, which can result in 

performance challenges when dealing with substantial data volumes. On the other hand, 
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NoSQL databases are specifically engineered to scale horizontally across multiple servers. 

This horizontal scalability enables them to efficiently manage and process extensive 

amounts of data without encountering performance issues. 

 

In the context of smart cities, the information is modelled in various and different data 

structures, the data is continuously generated and sent for processing, and therefore, there 

have been identified business flows that are both built on flexible data models and handle 

massive amounts of data and should be managed using a NoSQL database [6]. A NoSQL 

document database such as MongoDB would fit flawlessly in a scenario where the data is 

sent through JSON files, and it stores its data in BSON documents, which are the binary 

representation of JSON files [7], and the information persistence operations should require 

little to no additional processing. While traditional relational database management systems 

cannot store Big Data efficiently and should be avoided for such applications, it is unlikely 

that a software platform that manages a smart city would implement only features that 

require the use of non-relational databases. Normally, the generated data is stored, and 

processed and the refined data has to be stored in a more organized data structure, which is 

accommodated better by a light RDBMS, such as PostgreSQL. 

 

The research has underlined that to build an efficient and reliable database system for a 

platform that handles and manages Big Data for a Smart City, the architecture should 

include both, a non-relational database, such as MongoDB, OrientDB, RedisGraph, or 

Neo4j, for the entities that have a dynamic structure, and a lightweight traditional relational 

database, such as MariaDB, PostgreSQL, for refined data, or other information that is 

described by a rigid data model, such as a user profile. 

 

3. The 3Vs of big data (Volume, Velocity, and Variety) 

It is crucial for a smart city to have a significant amount of data to be analysed by city 

administrators to identify patterns, trends, and areas for improvement, leading to more 

sustainable and livable urban environments. Additionally, the availability of data enables 

the development of innovative technologies and services that can further enhance the 

quality of life for residents and promote economic growth. But the data is diverse and 

dynamic and this includes data related to traffic flow, energy consumption, and public 

transportation, among others. The essential attributes for data in a smart city context are 

the 3Vs of big data, which are Volume, Velocity, and Variety. 

 

3.1. First V (Volume) 

The astonishing amount of data that could be generated by IoT devices in 2025 is predicted 

to be 79.4 zettabytes. To put this number into perspective, let’s think that an average 

computer has a storage capacity of around 512GB. Considering this amount of data as being 

a single drop of water, 79.4 zettabytes would be equivalent to around 3 Olympic pools. As 

mentioned before the data quantity will soon no longer be a problem because of the 

technological developments. Looking below (Figure 2) we will see a graph from a popular 

ML article written by Microsoft researchers [8], in which they worked on natural language 

disambiguation problems (*homophones = each of two or more words having the same 

pronunciation but different meanings, origins, or spelling, for example, new and knew). 
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Fig. 2. Machine learning: Learning Curves for Confusion Set Disambiguation. 

Source: [8] 

 

In this graph we can see different Machine learning (ML) algorithms and that the larger the 

dataset, the precision increases. Should we just collect more data, in order to make the 

models more accurate in a smart city? We can generate our own data that is also relevant 

for our model. For example, there are Machine learning models that can do image 

classification, in this scenario we can just rotate the image that is fed to the model to obtain 

new data. 

 

3.2. Second V (Velocity) 

A Machine learning model after it is trained, is a set of parameters that define behavior. In 

some cases, it remains the same, but sometimes in the context of a smart city, it is not. 

Because of its dynamic nature, we have to consider that some of the models need to be 

retrained. Now computational complexity needs to be taken into consideration. 

 

In a smart city, data comes at a faster pace than it can be processed. We can store the data, 

then process it later and also speed up the procedure with parallel processing. Data cleaning 

is essentially correcting errors, inconsistencies and inaccuracies by standardizing and 

normalizing data. We still need to clean data, although we would store it in a NoSQL 

database because providing uncleaned data to a ML model will affect its performance and 

reliability. Also, dimensionality reduction is a key improvement, consisting of transforming 

the original set of characteristics into a new set, which has reduced dimensions (for 

example, Principal Component Analysis by using linear combinations of the original 

characteristics). This leads to reduced computational complexity but also affects the 

performance of the model, as in the graph [9] shown in Figure 3. 
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Fig. 3. Model Performance vs No. of Dimensions (Features) – Curse of Dimensionality. 

Source: [9] 

 

3.3. Third V (Variety) 

The variety of the data comes from the fact that it can be structured, unstructured and 

semi-structured data. Structured data is often found in SQL databases as it fits neatly into 

tables, the semi-structured data consists of video files, images, and text documents. So 

unstructured data needs to undergo processing to extract the important features. The 

unstructured data consists of files such as JSON, XML, and BJSON and it is most often 

used in NoSQL databases. 

 

From another perspective, the data could also be categorized as temporal data, geospatial 

data, multimedia data, numeric data and text data. The sources vary and the opportunities 

are endless. Having access to abundant data provides a better view of insights, giving the 

opportunity for a clearer understanding of the complex urban ecosystem that a smart city 

implies. Machine learning can determine correlations between the data that the human eye 

cannot perceive, but it is our duty to determine how to use this to our advantage to get 

closer to the ideal of a smart city. 

 

Before moving forward, the key points of this would be that all the challenges that come 

when working with big data have a solution and overcoming them is taking our society a 

step closer to the concept of a smart city. The interconnection between big data, SQL, and 

NoSQL databases will continue to shape the future of smart cities. As we anticipate further 

improvements in technology and a growing influx of data sources, the importance of 

scalable database solutions cannot be overlooked. 

 

4. Case study (some real example/s, e.g., Smart Santander) 

In this section, we delve into practical, real-world applications of NoSQL databases in the 

realm of smart cities, with a focus on the SmartSantander project. SmartSantander proposes 

an experimental research facility in support of typical applications and services for a smart 

city. The project envisions the deployment of 20,000 sensors in Belgrade, Guildford, 

Lübeck and Santander, exploiting a large variety of technologies [10]. This case study 

exemplifies how NoSQL technology is being leveraged to address the complexities and 

challenges inherent in managing the voluminous and diverse data generated in a smart 
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urban environment. Through the SmartSantander project, we aim to highlight the 

practicalities, benefits, and innovations brought forth by the integration of NoSQL 

databases in large-scale, data-intensive smart city applications. 

 

The SmartSantander project, a large, open and innovative city-scale experimental research 

initiative, exemplifies the vital role of NoSQL databases in managing the complex data 

ecosystem of a smart city. This unique venture aims to transform the city of Santander, 

Spain, into a smart city by deploying around 12,000 sensors across diverse urban 

environments. These sensors, utilizing various technologies, support a wide array of smart 

city applications, highlighting the project's scalability and heterogeneity [11]. 

 

The architecture of SmartSantander is designed to be both scalable and trustable, meeting 

the primary requirements for a real-world IoT experimental platform. This encompasses 

incorporating essential building blocks necessary for the IoT framework. SmartSantander 

focuses on validating approaches to the IoT architectural model, evaluating key 

components of IoT architecture, and assessing the social acceptance of IoT technologies 

and services. This comprehensive approach underscores the importance of flexible and 

scalable data management systems, like NoSQL databases, in smart city contexts.  

 

In this context, the massive data sets generated by the extensive sensor network underline 

the need for databases capable of efficiently handling large and diverse data sets, a hallmark 

of NoSQL databases. Their inherent design to accommodate a variety of data types and 

formats makes them particularly suitable for the varied data generated in smart cities. 

Additionally, the real-time data analysis required for services such as traffic management 

and emergency response necessitates the speed and efficiency provided by NoSQL 

databases in data processing and querying. The platform’s architecture is delineated into a 

three-tiered structure (see Figure 4), encompassing IoT devices, gateways, and server tiers, 

each serving distinct functions within the smart city infrastructure [12]. 

 

 
Fig. 4. Logical separation of 3-tier node architecture into a testbed observation and management and an 

experimentation plane. 

Source: [12] 
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The platform's architecture is designed with a three-tiered structure, consisting of IoT 

devices, gateways, and server tiers. Each tier has its own specific role and function within 

the smart city infrastructure: 

• IoT Device Tier: represents the primary experimental base, includes IoT devices 

and IoT nodes witch and are responsible for collecting data from various sources 

within the city. To ensure reliable operation in outdoor conditions, these devices 

are strategically placed in inaccessible locations and equipped with dual power 

supplies and communication interfaces, alongside robust management procedures 

for rapid malfunction detection. 

• IoT Gateway Tier: serving as an intermediary between the IoT devices and the 

server tier, this tier links edge IoT devices to the core network infrastructure. 

Gateways aggregate and preprocess the data collected from the devices before 

transmitting it to the server tier. They also provide security and connectivity 

functionalities, ensuring reliable and secure data transmission. 

• Server Tier: is responsible for processing and analyzing the collected data, it 

comprises server devices connected directly to the core network. Hosting IoT data 

repositories and application servers, this tier includes powerful servers and cloud 

infrastructure that can handle large volumes of data and perform complex analytics 

ensuring high reliability and availability. The server tier enables data storage, 

real-time analysis, and the generation of actionable insights that can be used for 

decision-making and optimizing city operations. 

 

By organizing the architecture into these three tiers, the platform can efficiently manage 

and process the data collected from IoT devices, ensuring seamless communication, data 

integrity, and scalability within the smart city infrastructure. Also, this layer provides 

valuable insights for decision-making and resource optimization. The architecture's design 

is communication-agnostic, permitting diverse technological implementations. It's 

bifurcated logically into a Testbed observation and management plane and an IoT 

experimentation plane. The former manages dynamic, automated fault management and 

configuration, while the latter is used for configuring and controlling experiments through 

APIs. This logical separation does not imply physical segregation, allowing functionalities 

of both planes to coexist within a single device or to be physically separated to avoid 

performance impairment on constrained devices. This framework is pivotal in minimizing 

human intervention and enhancing the manageability of large-scale IoT infrastructures. 

 

Transitioning from the broader perspective of the SmartSantander project's architecture, we 

delve into a more specific and concrete framework, focusing on the City Data and Analytics 

Platform (CiDAP) [13]. CiDAP is ingeniously designed as a middle layer interfacing 

between various data sources and the applications that serve a smart city. Its architecture 

consists of several critical components explained in Table 2. 

 
Table 2. Base components in City Data and Analytics Platform (CiDAP) 

IoT-Broker and 

IoT-Agents 

These elements are pivotal for data collection. The IoT-broker harmonizes 

communication with IoT-agents, which function as intermediaries for different 

data sources, managing the intricate details of numerous sensor nodes. 
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Big Data Repository This is the core where data storage is meticulously managed. The sensor data, 

harvested through IoT-agents, are securely stored as JSON documents within a 

NoSQL database. CouchDB has been selected for its robustness and suitability for 

handling the voluminous data characteristic of smart cities. 

Big Data Processing To handle the intensive data processing and analytics, this module leverages the 

power of a Spark cluster. This setup provides the necessary scalable and flexible 

computation resources to process and analyze large data sets effectively. 

City Model Server This server acts as the communication hub with external applications. It utilizes 

predefined City Model APIs to manage queries and subscriptions, facilitating a 

seamless flow of information between the platform and its users. 

Source: Authors' own work  

 

The data collection in CiDAP is diverse, encompassing semi-structured data like sensor 

information in JSON format and unstructured data such as social media texts and 

surveillance images/videos. This assortment of data is efficiently managed through the 

IoT-broker and IoT-agents. Data processing in CiDAP is categorized into two distinct 

types: internal and external. Internal processing is confined within the CouchDB database 

and mainly involves creating indexed views through map and reduce functions. In contrast, 

external processing, which encompasses more complex data analytics, is executed outside 

CouchDB, utilizing the extensive capabilities of the Spark cluster. 

 

The CityModel API plays a crucial role in interfacing external applications with the CiDAP 

platform. It supports various types of queries, from simple ones that provide a snapshot of 

the latest sensor status to complex queries that delve into historical data. Additionally, it 

offers subscription services for continuous data updates. The IoT-broker, derived from 

NEC’s open-source project Aeron, along with the CityModel server and platform 

management portal developed in JavaScript, based on the NodeJS platform, demonstrate 

the platform's versatility. The deployment of anomaly detection for traffic sensors and the 

integration of a comprehensive dashboard service highlight the platform's practical 

applicability in a real-world smart city scenario. Incorporated below is a diagram that 

visually represents the CiDAP architecture, illustrating the interconnectedness of its 

various components and the flow of data between them. 

 

 
Fig. 5. CiDAP Architecture Diagram. 

Source: [13] 
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This is achieved by including a broad set of applications that demonstrate the platform's 

utility and its impact on citizens, emphasizing the diversity, dynamics, and scale required 

for advanced protocol solutions. Based on this architecture, SmartSantander offers an 

Experimentation Facility among the scientific community, end users, and service providers 

including a set of applications that follow the development of measurements for utility and 

its impact on citizens, emphasizing the diversity, dynamics, and scale. 

 

SmartSantander has become a model for smart cities worldwide for several key applications 

workflows and management that need to be implemented in all smart city frameworks [10]: 

 
Table 3. SmartSantander applications 

Environmental Monitoring SmartSantander introduces a paradigm shift by deploying a vast network 

of low-cost IoT sensors, providing data on air quality, noise levels, and 

luminosity across extensive areas. While these sensors may not match 

the precision of traditional equipment, their widespread distribution 

allows for intelligent data processing to achieve sufficiently accurate 

environmental assessments. 

 

Outdoor Parking Management 

and Driver Guidance 

SmartSantander involves deploying ferromagnetic wireless sensors 

under the asphalt of parking bays in the city center. These sensors 

monitor parking space occupancy and connect to the internet through 

repeaters, enabling real-time dissemination of parking availability to 

drivers and traffic control centres. This system also aids municipal 

authorities in analyzing parking patterns and making informed decisions 

about parking provisions. 

 

Parks and Gardens Precision 

Irrigation 

SmartSantander has augmented existing automated irrigation systems in 

parks and gardens with IoT devices. These devices collect data on 

environmental conditions like air and soil temperature, humidity, leaf 

wetness, and rainfall. This precision approach replaces the traditional 

schedule-based systems, significantly enhancing irrigation efficiency 

and reducing water wastage. 

 

Augmented Reality This application involves enhancing the cityscape with IoT endpoints to 

provide context-sensitive information and services. Visitors interacting 

with these tags through their mobile phones receive information and 

services relevant to their location. For instance, tourists can enjoy an 

augmented reality experience with descriptions of monuments in their 

preferred language.  

 

Participatory Sensing Citizens' mobile phones double as sensors, contributing data like GPS 

coordinates, environmental conditions (noise, temperature), and 

direction to the SmartSantander platform. Users can subscribe to 

services like alerts for specific city events and contribute to the data pool 

by reporting occurrences, enhancing community engagement and 

responsiveness. 

Source: Authors' own work  

 

These real applications of the SmartSantander project showcase the transformative 

potential of IoT in urban environments. By integrating technology into everyday city 

operations and citizen engagement, SmartSantander leads the way in smart city 

development, enhancing urban living through technology-driven solutions. In conclusion, 

SmartSantander serves as a compelling case study for the application of NoSQL databases 
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in smart cities. Its scale, diversity, and technological sophistication underscore the 

advantages of using NoSQL databases in managing the complex and voluminous data 

inherent in smart city environments. 

 

5. Conclusions 

The evolution of devices and sensors in a city has led to a significant growth in data. As 

the volume, velocity, and variety of data continue to increase, there is a growing need for 

large, flexible, and open system databases. These databases play a crucial role in managing 

and accessing complex and large volumes of data, enabling efficient storage, retrieval, and 

analysis. By utilizing such databases, cities can effectively handle the diverse and dynamic 

nature of data generated by devices and sensors. The integration of both SQL and NoSQL 

database systems plays a crucial role in the advancement of data management within smart 

cities, contributing to the evolution of urban landscapes. Given the dynamic nature of smart 

cities, careful consideration is required when selecting a database architecture. SQL 

databases excel in managing structured data, providing robustness and reliability. On the 

other hand, NoSQL databases offer flexibility in handling unstructured and real-time data, 

accommodating the diverse and rapidly changing data generated in smart city 

environments. By leveraging the strengths of both SQL and NoSQL databases, smart cities 

can effectively manage and analyze data, enabling informed decision-making and 

facilitating the development of innovative solutions for urban challenges.  

 

The SmartSantander project, particularly through the CiDAP framework, provides a vivid 

illustration of the practical applications of NoSQL databases in smart city environments. 

The strengths of NoSQL databases are clearly evident in this context: their ability to handle 

large volumes of diverse data efficiently, their scalability to accommodate the rapid 

expansion of urban IoT networks, and their flexibility in data modelling, which is crucial 

for processing the varied data generated by a smart city. These attributes make NoSQL 

databases particularly suitable for the dynamic and heterogeneous nature of smart city data. 

A lesson learned within the SmartSantander project was that the initial version of the 

database system was based on SQL relational databases (e.g. used to store resource 

descriptions) but to meet the new requirements, it was replaced with a MongoDB (NoSQL) 

to ensure flexible handling of various resource description documents and better 

performance [14] [15]. 

 

Also, there is a need to establish a universal standard that would increase the speed of the 

development process. Creating a standard means that all researchers work towards the same 

goal and after it is tested and implemented for the first time, the only thing left is to replicate 

that for another city from the European Union. By creating a common foundation, we can 

unlock the true potential of this data-driven system that could delve more into detail about 

the economic and social effects of implementing a benchmark [16]. On the other hand, 

some aspects should be taken into consideration, like resilience, reliability and security of 

NoSQL database systems. Cyber security and data privacy represent a concern, through 

securing and encrypt communications between IoT devices, sensors, fog and cloud 

architectures to avoid attacks on the city infrastructure and information theft. 
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In summary, while NoSQL databases offer significant advantages for smart city 

applications, there remains a need for ongoing innovation and development in areas of 

standardization, data integrity, and advanced analytics to fully realize their potential in this 

rapidly evolving field. The establishment of a standardized database framework propels the 

development of smart cities forward and sets the stage for interconnected smart cities taking 

humanity towards an intelligent and technology-driven future. 
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